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bstract

Total trihalomethanes (TTHM) concentrations vary widely and periodically between 70 and 130 ppb. Data from the National Environmental
ervices Laboratory, Houston, Texas indicate that pH and free residual chlorine contribute minimally to the wide variability of TTHM levels.
emperature variation in drinking fluctuates from 11 to 27 ◦C. The objective of this research is to formulate a model that delineates more clearly the
aily variations of the most prevalent volatile trihalomethane by-products: chloroform (CHCl3), bromodichloromethane (CHBr2Cl), and bromoform
CHBr3) levels from drinking water. This model simulates the daily fluctuation of THM at a single location and at any time during the day as a
unction of the water temperature and the average concentration of TTHM, which can be estimated. The hypothesis of this study is that observed
aily fluctuations of TTHM, CHCl3, CHCl2Br, CHClBr2, and CHBr3 are periodic. This hypothesis is tested using autocorrelation functions and
t is shown that for the series of pH the correlation coefficient is maximal at zero lags, rapidly decreases to zero, and increases again between 4-
nd 6-h period. Such pattern suggests random fluctuation unrelated to time. However, the series of free residual chlorine, temperature, TTHM,
HCl3, CHCl2Br, CHClBr2, and CHBr3 suggest a different pattern. The correlation coefficient increases when the time-shift approaches 24 h.
hese repetitions in fluctuation of content over a 24-h period are statistically significant. The model formulated in this study provides insights in

THM variation and is a necessary tool to reduce the error when estimating potential risk from exposure to trihalomethane compounds in drinking
ater system. In general, calculation of potential risk by using a value measured early morning or late afternoon concentrations were found minimal

ead to an underestimation of the population risk.
2007 Elsevier B.V. All rights reserved.
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. Introduction

.1. Temperature impact

A temperature effect on the THM formation potential has
een noted by episodic observations from field studies. For
nstance, Rook [9] observes that consumption of chlorine
ncreases when temperature increases and more THM are
ormed, while Symons et al. [13] suggest that differences in tem-

erature would affect THMFP. Fram [2] states that with more
olatile THM, more species are produced at higher temperature
nd Oliver [7] affirms that low temperature aids in the retention
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f a chlorine residual by reducing the rates of reaction leading
o hypochlorous acid removal. In general, the rates of chemi-
al reactions decrease with decreasing temperature. The relative
oncentrations of reactants and products in chemical equilib-
ium can also change with temperature. The magnitude of this
hange depends on the Gibbs free energy change of the reaction
n question. Rodriguez and Serodes [8] state that increasing the
emperature will also increase the vapor pressure of trace THM
ormation. Stevens et al. [12] demonstrate that the rate of forma-
ion of chloroform in raw water treated with a chlorine dose of
0 mg/L increased threefold between 3 and 25 ◦C. In a survey of
rganics in Ontario drinking water, Stevens et al. [11] conclude

hat water temperature was perhaps the single most important
actor influencing seasonal variation in TTHM concentrations.

Moreover, many researchers have studied the chemical reac-
ion of NOM that is a non-living component, which are a
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that the model correctly describes the relationship of the
variables, if there is a relationship.
E. Chaib, D. Moschandreas / Journal o

eterogeneous mixture composed largely of products resulting
rom microbial and chemical transformations of organic debris
ith chorine using different NOM components based on the ori-
in and pathway taken by the surface water, vegetation, soil type,
nd climate. These researchers conclude that the hydrolysis is a
ate-limiting step for the THM formation potential because the
ncrease of water temperature changes the dissociation of H+

nd OH− making the water either more acidic or alkaline and
his phenomenon act as catalyst for hydrolysis reaction.

It has been suggested by the literature that concentration vari-
bility of THM compounds in tap water may play a larger role
han behavioral characteristics (for example, showering dura-
ion) in determining individual exposure. This study will help to
etermine the pattern of variability in disinfection by-products
t a specific point in the distribution system and within 24-h
eriod. The first hypothesis of this study is that the fluctuation
f TTHM and its components is periodic. The second hypoth-
sis test whether the periodic model formulated for this study
escribes the observed variation of measured TTHM concentra-
ions and concentrations of subject TTHM components.

. Materials and methods

.1. Texas database

The database used in this study was obtained from the
ational Environmental Services Laboratory of Houston, Texas.
his data set was collected in 1980 at a location 15 km from treat-
ent plant from constantly flowing tap water at a medical center.
his water has been found to contain comparatively high con-
entrations of THM. Samples were drawn during the weeks of
ovember–December 1980 at 10 a.m., 2 p.m., 6 p.m., 10 p.m.,
a.m., and 6 a.m. This database will be used to investigate and
odel the daily change of TTHM as a function of time. This site
as chosen because: water distributed within the Houston Medi-

al Center is of surface origin, derived from the San Jacinto River
ia Lake Houston. The water had been found to contain com-
aratively high concentrations of THM. San Jacinto River water
s distributed within the city of Houston from a single treatment
lant to approximately 50% of Houston residents. Additionally,
uilding security and other facilities allowed investigators to
emain on the site for the duration of the sampling, including
octurnal sampling hours. CHCl3, CHBr3, CHCl2Br, CHClBr2,
ater temperature, pH and residual chlorine of drinking water
ere measured every 4 h for 7 weeks by Smith et al. [10].
THM concentrations were measured every 4 h for 49 days

t the site of the University of Texas Health Science Center.
hile this is not a residential environment, the daily THM level

ariation should not be different as a function of the sampling
ite type.

.2. Sub-model: daily variation of trihalomethane level
A sub-model is formulated to simulate the daily fluctuation
f THM at a single location. The two important factors that
ffect this daily fluctuation of THM in the distribution system
re: (1) stagnation and flashing periods and (2) temperature. In

(

(
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rder to identify the plant stagnation and flashing system effect
n the daily THM variation a time series-forecasting model is
ormulated as is explained below.

Box–Jenkins methods require at least 40 or 50 equally spaced
eriods of data. The data input must be adjusted in the following
tepwise manner, Farnum and Stanton [1].

Step one. In order to detect a potential of 24-h cycle, weekly
rend, or any other systematic feature and distinguish it from
urely random fluctuations a lagged autocorrelation is used
3–6].

Autocorrelation is the correlation between observations of a
ime series separated by k time units. The plot of autocorrelation
s called the autocorrelation function or acf.

Once we prove that the system is periodic, a harmonic
unction model is applied to describe the variation of THM con-
entration in the distribution system as a function of flushing
nd stagnation processes.

A wave type model using a harmonic equation and an iteration
ethod fits a given dataset as described below:

= Y0 + a sin

[
2πt

P

]
(1)

here Y is the THM level at any time of the day; Y0 the average
alue of THM during the 24-h defined cycle or period; a the
aximum variation above and below the average, also called

mplitude of the periodic function; P is the parameter represent-
ng the period of the function defined by the program and t is
he time of the day.

Step two. Up to 600 iterations are used to fit this type of equa-
ions. The iterative approach models every cycle (24-h period)
eparately. Therefore, we have 49 different sets of equations (7
ycles every week for 7 weeks). These 49 different equations
ave different amplitude value (a), different Y0 and different
arameter P [3]. The form is as follows:

ij = Y0ij + aij sin

[
2πt

Pij

]
(2)

here i is the day and j is the week.
Third step, the values of the parameter P and the variable aij

rom the iteration process output will be studied using iteration
rocess. This process leads to 49 different regression equations,
nd 49 different sets of amplitude aij and Pij values. Each equa-
ion is checked for adequacy using the following criteria:

1) The predicted residual error sum of squares (PRESS) gauges
how well a regression model predicts new data. The smaller
the PRESS statistic, the better the predictive ability of the
model.

2) The power, or sensitivity, of a regression is the probability
3) The mean square provides an estimate of the population
variance.

4) The F-test statistic gauges the contribution of the indepen-
dent variables in predicting the dependent variable.
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Table 1
Descriptive statistics of daily variation of TTHM in the distribution system: Thursday, Friday, Saturday, Sunday, Monday, Tuesday, and Wednesday

Variable N Mean Median TrMean S.D. S.E. mean

Thursday 7 97.43 93.00 97.43 12.58 4.76
Friday 7 97.29 95.00 97.29 11.64 4.40
Saturday 7 100.00 95.00 100.00 13.93 5.26
Sunday 7 94.41 94.20 94.41 8.07 3.05
Monday 7 98.46 94.20 98.46 10.88 4.11
Tuesday 7 99.14 96.00 99.14 9.10 3.44
Wednesday 7 97.79 96.00 97.79 10.78 4.07

Variable Minimum Maximum Q1 Q3

Thursday 85.00 120.00 88.00 109.00
Friday 83.00 119.00 89.00 104.00
Saturday 84.00 122.00 89.00 115.00
Sunday 82.70 109.00 89.00 97.00
Monday 84.00 116.00 92.00 108.00
Tuesday 92.00 118.00 92.00 103.00
W 117
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5) The P value, or the probability of falsely rejecting the null
hypothesis, or committing a Type I error, based on F-test
statistics.

The modeling process described above will help estimate the
HM concentrations at any time of the day at a specific location

n the distribution system.

. Results

Descriptive statistics of the collected data are shown for
THM for a randomly selected week (second week of Novem-

er 1980), see Table 1, and for temperature, see Table 2. Similar
ables have been formulated for each subject THM compound
bromoform, chloroform, dibromochloromethane) and for every
eek.

able 2
escriptive statistics of daily variation of water temperature in the distribution

ystem: Thursday, Friday, Saturday, Sunday, Monday, Tuesday, and Wednesday

ariable N Mean Median TrMean S.D. S.E. mean

hursday 7 23.43 25.00 23.43 4.39 1.66
riday 7 25.714 26.000 25.714 1.799 0.680
aturday 7 17.86 17.00 17.86 3.72 1.40
unday 7 14.29 14.00 14.29 5.06 1.91
onday 7 19.71 20.00 19.71 5.77 2.18

uesday 7 21.00 21.00 21.00 3.37 1.27
ednesday 7 18.00 19.00 18.00 3.56 1.35

ariable Minimum Maximum Q1 Q3

hursday 19.00 29.00 19.00 28.00
riday 23.000 28.000 24.000 27.000
aturday 14.00 25.00 15.00 20.00
unday 9.00 20.00 9.00 20.00
onday 13.00 31.00 15.00 21.00

uesday 15.00 26.00 20.00 23.00
ednesday 12.00 22.00 15.00 21.00
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Fig. 1 shows the concentration of total trihalomethane
TTHM) in drinking water over one entire week from the study
eriod, and displays the variation in concentration as a function
f time during each day. It is apparent that there is a wide vari-
tion in TTHM from 70 ppb to nearly its double, 130 ppb, and
here appears to be a periodic rise and fall in these concentra-
ions. The lowest values were observed in the nocturnal hours,
etween 10 p.m. and 2 a.m.; the highest values were observed
aily near 2 p.m. Rapid changes in concentrations were found
o occur, by as much as 30–40 ppb within 4 h. The average con-
entration of total trihalomethane was 98 ppb, with the highest
evel observed on Saturday morning and the lowest on Tuesday
vening.

The 24-h average concentrations ranged from 116 ppb on Sat-
rday to 86 ppb on Monday. Concurrent measurements of pH
nd chlorine both show rather small fluctuations. Free residual
hlorine ranged from non-detectable to trace quantities, while
H varied from 7.6 to 7.9, which demonstrates that pH and free
esidual chlorine contribute minimally to the wide variability
een in total trihalomethanes (see Fig. 2). Temperature variation
n drinking water was measured and it was found to fluctu-
te from 11 to 27 ◦C. Temperature generally peaked between
0 a.m. and 2 p.m., while lower values were observed at night
see Fig. 3). It was hypothesized earlier that the observed daily
uctuations of TTHM, CHCl3, CHCl2Br, CHClBr2, and CHBr3
re periodic.

Autocorrelation computes and plots the autocorrelations of
time series as a function of lags (every 4 h is considered a

ag). In this study, the software Minitab is used to generate
utocorrelation functions (acf) with α = 0.05.

The coefficient of correlation remains high at nonzero lags,
ecreases slowly and increases again as the time shift approaches
4 h. This suggests some repetitions in fluctuation of content of

ver the 24-h period, a persistent trend in the fluctuation of THM
oncentrations. However, a random fluctuation unrelated to time
s suggested if the correlation is maximal at lag zero, decreases
o zero, and increases again between 4 and 6 h.
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Fig. 1. Daily variation of TTHM in tap w

Fig. 2. Fluctuation of pH, residual chlorine and TTHM of tap water at the clinic,
Houston, Texas.

Fig. 3. Fluctuation of temperature and TTHM of tap water at the clinic, Houston,
Texas.
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ater at the clinic, Houston, Texas.

In this study, autocorrelations are tested with t-statistics to
how if they are different from zero, which means that the
ariables tend to be periodic. Absolute value of t-test greater
han 1.25 for lags one through three, or greater than two for
ags four and beyond, indicate autocorrelation values that are
ot equal to zero. The autocorrelation for all variables such
s TTHM, CHCl3, CHCl2Br, CHClBr2, and CHBr3, and tem-
erature, and residual chlorine are developed. Figs. 4 and 5
resent the autocorrelation curve derived for the TTHM and
ater temperature variables. They are always maximal at lag

ero, a slow decrease was noticed and then an increase as
he time shift approached 24 h. For the series of free resid-
al chlorine, CHCl3, CHCl2Br, CHClBr2, and CHBr3 suggest
same pattern as TTHM and water temperature. For these

ime series as autocorrelation results show the coefficients of
orrelation high at zero, decreases and increases again as we
pproach the 24 h and then decreases again and the same pat-

ern is repeated. This suggests some repetitions in fluctuation
ver the 24-h period; this persistence is statistically significant as
evealed by the tests of autocorrelation with the t-statistic results
f TTHM, chloroform, bromoform, dibromochloromethane,

ig. 4. Autocorrelation of TTHM level in drinking water at the clinic, Houston,
exas.
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Fig. 5. Autocorrelation of water temperature level in drinking water at the clinic,
Houston, Texas.

Table 3
t-Statistic results of autocorrelation coefficients

Lag/t-statistic TTHM pH Temperature Res.-Chlorine

0 2.24 0.12 3.16 3.24
4 1.68 0.64 0.76 2.35
8 1.0 −0.68 0.22 1.76

12 0.86 1.45 0.49 0.73
16 1.15 0.15 1.13 1.05
20 1.45 −0.21 1.17 1.4
24 2.05 0.42 1.36 1.7
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8 −0.40 −0.49 0.89 1.3
2 −0.48 1.19 −0.96 0.32

ichlobromomethane, temperature and finally residual chlorine
re summarized see Tables 3 and 4. However, for the time
eries of pH the correlation coefficient is maximal at zero lags,
apidly decreases to zero, and increases again between 4- and
-h period. Such pattern suggests random fluctuation unrelated
o time.

These results suggest that the variation in concentration is not
n experimental variation but a real systematic phenomenon. It
s probable that there is a systemic stagnation during the noc-
urnal hours, which would explain the higher concentration of

HM detected in the morning hours. The lower concentration
een in the evening after heavy usage flushed the system would
lso be expected. We pronounce the system periodic and apply a

able 4
-Statistic results of autocorrelation coefficients of trihalomethane compounds

ag/t-test TTHM CHCl3 CHBr3 CHClBr2 CHCl2Br

0 2.24 2.4 1.69 1.25 3.06
4 1.68 1.73 0.53 0.33 2.3
8 1 1.29 0.29 −1.33 1.39
2 0.86 1.49 −0.31 −1.07 1.15
6 1.15 1.07 −0.48 −0.37 1.26
0 1.45 1.18 −0.22 1.23 1.64
4 2.05 2.37 2.67 2.41 2.11
8 −0.4 0.32 0.22 −0.47 −1.09
2 −0.48 0.09 −0.29 0.19 −0.89
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armonic function model to describe the variation of THM con-
entration in the distribution system as a function of flushing
nd stagnation processes.

A harmonic equation was used as a regression model in con-
unction with an iteration method to fit the data of the TTHM in
ap water. Trihalomethane components follow the same concept

= Y0 + a sin

[
2πt

P

]
(3)

here Y is the TTHM level at any time of the day; Y0 the daily
verage value of THM during the 24-h period; a the maximum
ariation above and below the average, also called amplitude
f the periodic function; P is the parameters defined by the
urve fitting function of THM daily variation using iterative pro-
ess (Sigma Plot) and they represent the cycle or period of the
inusoidal equation.

Up to 600 iterations are used to fit this type of equations.
he iterative approach models every cycle (24-h period) sepa-

ately. Therefore, 49 different sets of equations (7 cycles every
eek for 7 weeks) are formulated. These 49 different equations
ave different amplitude values (a), different Y0s and different
arameters (P). An example of this approach leads to the model
llustrated in Eq. (4), which is significant and has an adjusted
oefficient of determination of 0.799.

The final model is as follows:

HMt = THMa + a sin

(
2πt

24

)
(4)

here THMa is the average value of TTHM concentration within
ach 24 h cycle.

The assumption is that the variance of independent variables
s uniform. Constant variance tests were applied for all 49 equa-
ions developed and not one failed this test. This means that the
armonic equation model is a good fit for TTHM daily variation
n the at the consumer tap water. The large adjusted R2, the stan-
ard errors and the P value calculated for the regression model
ound in this study for all developed equations with no excep-
ion indicate that the developed model is a good description of
he relation between the independent and dependent variables.
hese equations provide a statistically significant fit to the mea-
ured TTHM at any time during the 24-h period. For all the 49
quations, the minimum R2 value obtained was 0.94.

The period b of the developed model is included in the 95%
I of 24-hours (Fig. 6). This means that b and 24 are statistically

he same, therefore the period of the model is shown again to be
4 and the new form of the model is as follows:

The amplitude variation “a” of the periodic model was inves-
igated as a function of daily temperature variation because the
bserved day-to-day variability of THM may be due to water
emperature variation influencing the amount of chlorine added
nd the rate of THM formation. As it was shown earlier in Fig. 3,
HM increases or decreases where an increase or decrease in
emperature takes place, respectively. The same observation was
ade when we studied the entire period study (7 weeks) the daily

eak of THM was higher when the daily temperature during that
ay was high.



E. Chaib, D. Moschandreas / Journal of Haz

F

t
t

a

w
l

n
f
0

T

t

T

F
o

w
a

4

t
w
h
m
k
m
l
o
e
e

v
b
d
t
a
t
v
t
r
q
c
w

o
a
t
t
t
d

ig. 6. Descriptive statistics of the parameter (b) of the developed model.

A regression equation is formulated below using the ampli-
ude from the 49 developed models and water temperature from
he database, and illustrated by Fig. 7.

Amplitude variation as a function of water temperature

= Y0 + bT (5)

here a is the amplitude of THM daily variation model; Y0 the
inear regression intercept; T is the water temperature.

The resulting Eq. (6) for the amplitude is statistically sig-
ificant (P = 142.0081) affirming that the amplitude is a linear
unction of water temperature with a correlation coefficient of
.74

he amplitude “a” = 3.463 + 0.5365 × temp (6)

Combining with the above process, the final model defining

he daily variation of THM is formulated as follows:

HMt = THMa + (3.463 + 0.5365 × temp) sin

(
2πt

24

)
(7)

ig. 7. Correlations between water temperature and amplitude of sinus model
f THM variation.
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here subscript a stands for average and subscript t stands for
t any time of the day.

. Conclusion and discussion

In this study, we were able to examine the daily variation of
emperature effects on levels of disinfection by-products along
ith the degree to which contaminant levels vary among house-
olds served by the same distribution system relative to the
agnitude of variability over time within 24-h periods. To our

nowledge, this is the first study that provides a quantitative esti-
ation of daily effects of temperature on the variation in THM

evels. Such a methodological model is beneficial in enhancing
ur understanding of the important sources of variation in lev-
ls of disinfection by-products in tap water and for assessing
xposure when epidemiological studies are carried out.

While there has been some suggestion in the literature that
ariability in tap water THM levels may play a larger role than
ehavioral characteristics (for example, showering duration) in
etermining individual exposure, the relative influence of varia-
ion in water concentration and in patterns of water consumption
nd water use on individual exposure warrant further investiga-
ion. Our data and modeling results for THMs also indicate that
ariation from hour to hour is very influencing when it comes
o choose a sampling strategy. As such, in the face of limited
esources, a sampling strategy that collected greater numbers of
uality assured measurements over time with fewer replicates
ollected at each sampling location would be more efficient and
ould likely yield improved estimates of (household) exposure.
The approach developed in this study incorporates more than

ne factor such as operating conditions and water temperature
nd proceeds with an iteration method to fit the harmonic model
o explain the daily variation. The best fit was observed during
he week days however, a slight deviation was observed during
he weekend and this deviation may due to the operating con-
itions such flashing and stagnation time when the demand in
eekend is a lot more than week days. The variation of the ampli-

ude of the developed model was found to be a linear function of
ater temperature. The tests of autocorrelation with t-statistic

esults of TTHM, determine that CHBr2Cl, CHBrCL2, CHCl3
nd CHBr3 follow the same trend as TTHM and will have the
ame model equation with different amplitude. We found greater
ssociation than reported previously because we have employed
n iterative approach in addition to Box and Jenkins method that
educed estimation errors.

In conclusion, the new model predicts well the daily variation
f TTHM concentrations because it employs all variables known
o affect THM concentrations as a function of the operating mode
nd water temperature. The operating mode and temperature are
elated to water consumption trends to better describe the daily
ariation of TTHM in drinking water at the consumer’s home.
n our knowledge, the literature does not contain models that
redict daily variation of TTHM at a specific location in the

istribution system within 24-h time period. We assert that the
odel formulated here will lead to more realistic risk estimates

rom drinking water at specific sites throughout the distribution
ystem.
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